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PRINCIPLES AND APPLICATION OF

SHOCK TUBES AND SHCCK TUNNELS

ABSTRACT

The principles, thecoretical flow equations, calculation technigues,
limitations and practical performance characteristics of basic and high
performance shock tubes and shock tunnels are presented. Selected oper-
ating curves are included.



SUMMARY

The basic shock tube flow is a transient response to an initial pres-
sure discontinuity. An investigation of the theoretical flow equations
indicates that the performance of a shock tube is extended as the driver
gas speed of sound is increased. In addition, within the limitations of
& reascnable source of energy for a shock tube, a variable area shock tube
has many advantages. The high performance shock tube is limited by dimin-
ishing returns and practical aspects of the flow, such as the available
test time.

4 shock tunnel is a nozzle which utilizes the stagnation conditions
created by a shock tube. The shock tunnel is useful from a Mach number,
Reynolds number standpoint, while the shock tube has a high capability in
enthalpy and pressure.

IKTRODUCTION

Aerothermodynamic problems associated with earth reentry have stimu-
izted rather extensive research in high temperature gases. The inherent
complexity of the associated chemistry, physics, and gas dynamics problems
has required considerable experimental effort.

To achieve an insight into the fundamental and operational aspects
of' advanced gas dynamic facilities the characteristics and limitations
of simple and high performance shock tubes and shock tunnels have been
investigated. It is hoped that this investigation will enable an insight
into the optimum use of ground facilities,

SYMBOLS
A cross sectional area of tube
a speed of sound
Cp specific heat at constant pressure
Cv specific heat at constant volume

LB electrical discharge energy per unit volume of driver ges
v



ultimate tensile stress

enthalpy
length of driven chamber

Mach number, g

pressure

reference enthalpy, 33.86 %%5
m

entropy

temperature

tube wall thickness
velocity

distance along driven chamber starting at the diaphragm, x = O
C

B

C

-

ratio of specific heats,

overall efficiency of electrical discharge process
time

viscosity

density

test time

Subscripts

initial, undisturbed driven gas (fig. 1)
shocked driven gas (fig. 1)
expanded driver gas {fig. 1)

initial, undisturbed driver gas (fig. 1)



5 reflected test gas (figs. 1 and 21)

6 expanded test gas (fig. 21)

c.5. contact surface

r.s. reflected shock

s incident normal shock

t total or stagnation state

0 free stream conditions encountered in flight
Superscripts

! constant area shock tube conditions

#* nozzle throat conditions

DISCUSSION

Shock Tubes

The shock tube is one of the most versatile and useful experimental
apparatus ever devised. The extreme range of conditions that may be
obtained in a shock tube lend its uses from the pure research by physicists
or chemists to simulation for engineers.

Principle of operation.- The operation of a shock tube may be
illustrated by considering a constant diameter tube divided into itwo
regions by a diaphragm as illustrated in figure 1{a). A gas pressure
difference is established across the diaphragm. The higher pressure
region is called the driver chamber while the lower pressure region is
the driven chamber. In operation, the diaphragm is burst either by
creating a pressure difference which exceeds the strength of the dia-
phragm or by initiating the opening by a puncture. This allows the
driver gas to expand into the driven chamber. The flow regions in the
shock tube are shown as functions of time and their position in the
shock tube in figure 1(b). The use of such a figure is particularly
convenient in describing the transient processes in the shock tube. It
should be noted that the reciprocal of the slopes of lines in this figure
are indicative of velocities. The following secilions deseribe the gas
dynamic prccesses occurring in the shock tube,




Normal shock wave: Following the diaphragm burst, the expanding
driver gas behaves much like a piston as it propagates into the driven
chamber. The driver gas accelerates and compresses the driven gas in a
manner that initially preduces a strong pressure gradient between the
compressed and the undisturbed driven gas. This pressure gradient rapidly
develops into a compression or shock wave which propagates into the
driven gas ahead of the expanding driver gas as shown in figure 1(%).
Once the shock wave 18 formed it becomes the mechanism of accelerating,
compressing and heating the driven gas. Sinece the undisturbed driven
gas is at rest, the velocity of the shock wave is fixed by the strength
P .

of" the shock (Eﬁ). The strength of the shock wave is maintained by the
1

expansion of the driver gas. ©Specifically, the driven gas is compressed

to a pressure (PE) that 1is equal to the pressure (P5) to which the

driver gas has expanded. This is illustrated schematically in figure
1{c) where the pressure distribution within the shock tube is shown at
aone instant of time after diaphragm rupture.

Although the velocity of the shock wave is roughly constant, the
overzll shock tube flow might best be considered as the transient process
of the initial driver and driven gases approaching an intermediate egui-
librium state.

The contact surface and test gas: The interface between the driver
and driven gas is termed the contact surface. By definition there is no
mass flux across this surface, and from continuity considerations the
Pressure and velocity on both sides must be equal. There can be signifi-
cant temperature and density discontinuities across the contact surface.
Az an example, figure 1(d) illustrates a possible temperature distribution
throughout the shock tube, at the selected time.

The gas between the shock wave and the contact surface is termed the
test gas. This gas may simulate the gas between a blunt entry vehicle
and the bow shock wave. The temperature, pressure, velocity, et cetera,
may correspond to full scale flight conditions. The contact surface be-
comes effectively the blunt face of the full scale vehicle. Thus for the
simulation of a normal shock at flight conditions a shock tube does not
require a model in the flow. The problem of scaling real gas effects
with vehicle size does not occur.

The driver gas expansion: Path lines have been included in
figure 1(b) to illustrate the flow of the driver and driven gases. It
should be noted that the expansion of the driver gas is not a discon-
tinuous process as the shock wave, but rather the driver gas accelerates
from rest to the expanded driver gas velocity in the form of an expansion
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fan. The expansion fan converts the stagnation energy of the driver gas
into the flow energy of the expanded driver gas and the work done in
compressing and accelerating the driven gas. The incremental expansion
wvaves, composing the expansion fan, travel at the speed of sound rela-
tive to the local driver gas conditions. Thus the driver gas speed of
sound determines the maximum integrated rate at which the driver gas
stagnation energy may be converted to the expanded driver gas kinetic
energy, or the rate and proportion of work used in compressing the
driven gas. Although the driver gas expansion is an unsteady process,
ifT the flow is assumed invicid, the expanded driver gas pressure (p.),
the pressure bechind the shock (P2 = PE)’ and the shock velocity are
all consztant.

Analysis of shock tube flows: A quantitative analysis of the primary
flow in a shock tube combines the normal shock wave relations, applied to
the driven gas and relative to the shock wave, with the unsteady isen-
tropic expansion of the driver gas. These relations are matched at the
contact surface where the pressures and velocities must be respectively
egual, as previously mentioned. The general shock tube flow relations
for a perfect gas have been derived in detail in many excellent papers
(for example, refs. 1 and 2), and the derivations will not be reproduced
here.

Ideal gas relation: The flow in a constant area shock tube is com-
pletely determined by the driver and driven gases and their thermodynamic
states. For ideal gases the thermodynaemic properties may be made dimen-
sionless by the ratio of the driver gas rroperty to the corresponding
driven gas property. For a pressure driven shock tube the flow parameters
may be expressed as a function of the initial driver to driven gas pres-

(EL>
sure ratio )
1

Since a shock, or compression, wave is the propagation of a dis-
continuity in pressure, the pressure ratio across the shock is termed
the shock strength. 1In the case of the shock tube the strength of the

P
shock wave (;gg) is related to the initial pressure ratio in the
1

tollowing way (ref. 2).

I T
1T Tor,
PP Coy T
vi "L
?Li:?gl“( 2 (1)
1 B 2.
5ot 1|




The subscripts in all of the relations refer to the regions outlined
in figure 1{Db}.

The ideal gas relaticns for additional sheck tube flow parameters
may be simplified considerably by expressing them as a function of the
shock strength as obtained from equation (1). For exemple, the shock
front Mach number or velocity may be expressed as:

1
Us Ty - 1 P2 LS } 1y 2
- S A (2)
1 51 1\"1
P2 .
It is to be noted that for a strong shock | large Eh the shock
1,

front Mach number is roughly proportional to the square root of the

shock strength. The Mach number of the test gas, however,

(2_> 5
M_Ue_Pl ’1'1P2\’1+1+12 (3)
= £ = 2. .2 5
1 2Ty \B At R

approaches a constant value for strong shocks. The reascn for this
phenomena is that although the test gas velocity,

a [P -1 N F
U 1(-—2—-1\1 4 <T1+ \—3-+1 (1)
1

2 Y \F Z

1
2

inereased with the square root of the shock strength for strong shocks,
50 does the speed of sound in the test gas,

T
J
n|

(5)

N
s



In an effort to obtain high Mach number shocks and therefore greater
shock strengths, it is of interest to note that for large initial pres-
sure ratios and strong shocks the shock strength may be obtained from
equation (1) in the approximate form,

o
P 2 1 8
o Tl(ﬁ + )( LI-) (6)

This relation indicates that the strength of the shock will increase
for an inecrease in the driver gas speed of sound or a decrease in the
driver gas ratio of specific heats. Unfortunately, a gas with a low
ratio of specific heats will tend toward a high molecular weight and thus
a lower speed of sound for a given temperature. Thus, to obtain strong
or high Mach number shocks, it is desireble to use a low molecular weight
driver gas at a relatively high temperature. This is in agreement with
the previous qualitative discussion in that the driver gas speed of sound
determines the limit for the rate at which the driver gas stagnation
energy is converted into kiretic energy. :

Real gas computations: In considering the flow of a real gas in a
shock tube, it is necessary to replace the caloric equation of state used
in the derivation of the ideal gas relations by the equilibrium proper-
ties of the gas. For a given driver gas state and a given driven gas
temperature (ambient temperature) the flow rarameters may be calculated
in the following manner.

If the expansion of the driven gas is assumed to be isentropic, the
unsteady energy equation (ref. 3},

(@)S+du=0 (7)

a

may be integrated graphically in the following form.

ug = - fﬁ(é) ab_ | (8)

The expanded driver gas state, state 3, is uniquely determined by the

assumption of constant entropy {83 = Sh) and the selection of the expanded



pressure (Pﬁ)' Thus, the pressure and velocity of the test gas are
fixed by the contact surface restrictions,

P, = 7, (98)

U, = U (9v)

At this point one property of the test gas has been fixed (P2) and
one property of the driven gas has been fixed (Tl). The remainder of
the calculation is an iterative process utilizing the boundary condition

of the test velocity, U If the driven gas state is selected, the

o
enthalpy of the test gas may be obtained from

(20)

The enthalpy and the pressure of the test gas fix the thermodynamic
state. The test gas density may be obtained from the equilibrium proper-
ties of the gas. If the state of the driven gas that has been selected
is correct, the density obtained above will agree with the following re-
lation,

P. - P
o
sy = 12 (11)
Uy
by - By - -5

(12)

may be obtained.

Ideal driver gas, real driven gas: In certain phases of shock tube
operation, an inert, monatomic driver gas is used. For these cases,
it is many times rossible to assume thet the driver gas behaves as an
ideal gas. This simplifies the calculation procedure in that the

graphical integration procedure required for the real gas is no longer
reguired.,



If the driven gas state and the shock speed, US, are selected, the
density of the test gas may be expressed as a function of the test gas

pressure, 2 2

92 i P P. + §) 2 (lp)
1" a2 TP Yy

By assuming a value of the test gas pressure, P_, the test gas density

2.’
may be calculated from equation (13). Thus, having two properties of
the test gas, (P2 pe), the enthalpy is determined by the equilibrium
properties of the test gas. If the test gas pressure assumed is correct,

this enthalpy will agree with the energy equation,

2
P, - P (F’ - P
h, = h, + -2 L 2 l> (1h)

P 2 2
1 2pl US

U, = <t (1)

may be obtained directly.

The properties behind e normal shock have been tabulated as a
function of the initial state and the shock velocity for air (refs. L
apd 5), This, of course, eliminates the need for the previous iteration
process.

In either case, relations for the isentropic expansion of an ideal

driver gas may be obtained by integration of the gimple wave relations
across the expansion fan. Thus the initial driver pressure

U fr, - 1 }]_- T
_ 204 b
B, = P, (1 g (16)

may be obtained directly for any given ay, and Y& and for the test
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gas pressure (PE) and velocity (UE) required. Since the speed of sound
in the driver gas (ah) and the driver pressure (Ph) are known, the

driver gas state is determined.

Performance characteristics.- To illustrate the magnitudes of the
shock tube flow parameters under various conditions, the results for a
bressure driven, constant area shock tube are presented in figures 2
through 6. Consideration is given to the use of air as the driver and
driven gases and to helium as the driver gas with air in the driven
chamber. TIn addition, the results of twe sets of calculations for heated
helium driver gas and air driven gas are given. The initial helium
driver gas temperatures used are T, = 31, 175° R and 15,848° R.

These calculations are presented under the assumption of ideal gases
and also with the considerations of real air. Since helium is relatively
inert up to temperatures of the order of 15,000° K where ionization
becomes significant, it has been considered as an ideal gas.

Shock strength: Tor ideal gases the shock strength may be determined
as a function of the initial pressure ratio by the use of equation (1).
This relation is plotted in figure 2 for the four cases considered. The
range of operation and the maximum shock strength obtainable increase
greatly in considering the use of helium as the driver gas in comparisan
with air, or in considering the use of heated helium driver gas as com-
rared to room temperature helium.

The real air calculations appear to be in reasonable agreement with
the ideal gas relations; however, to obtain a given shock strength using
heated helium and real air the caleulations indicate that the initial
pressure ratio required can easily be 30 percent greater than that given
by the ideal gas relations.

In addition, the hypothetical maximum shock strength for ideal
helium driver gas and ideal air driven gas is shown as a function of the
initial pressure ratio. It is to be noted that the shock strength
approaches the initial pressure ratio. This is to be expected since,
as the driver gas temperature approaches infinity, the speed of sound
in the driver gas also approaches infinity, and this determines the rate
at which the stagnation energy of the driver gas is dissipated.

Shock Mach number and velocity: Equation (2) is the relation
between the shock Mach number or velocliiy and the shock strength for
ideal gases. These relations are shown respectively in figures 3 and %
for the four cases considered. It is to be noted that the shoeck Mach
numbers and velocities realized with real air are generally somewhat

lower than the ideal gas predictions. It does appear, however, that
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ucing heated helium driver gas, a shock velocity of 35,000 feet per
second could be obtained with a reasonable initial pressure ratio on

the order of 105.

The maximum Mzch number and shock veloecity are also shown in these
Tigures. The maximum values indicate that the initial pressure ratio
must be high for a high performance shock tube. This was assumed in
equation (6) where the attempt was to determine the parameters of im-
portance for high performance. At this point, it can be concluded that
the high performence requirements for a shock tube are = high initial
pressure ratio and a high driver gas speed of sound.

Test gas velocity and Mach number: Figures 5 and 6 show, respec-
tively, the test gas velocity and Mach nwiber as a function of the
initial pressure ratio for the cases considered. The test gas velocity
for the real air calculations agrees reasonably well with the ildeal gas
relations. The Mach number, however, varies considerably under the
assumptions of real or ideal air. The main reason for this differernce
is due to the temperature in the test gas. As the shock Mach number
inereases, the enthalpy of the test gas increases. In real air, chemical
and thermodynamic modes of freedom absorb some of this enthalpy and
thus result in a lower overall temperature when compared to an ideal
gas. The eftfect increases with increasing enthalpy or temperature. This
is supported in figure & where the disagreement increases with initial
pressure rati¢o and or shock Mach number.

Flectric driver.- Both of tze heated helium driver gas sample calcu-
lations indicate that this mode of operation would at least theoretically
cover an cperating range which includes significant ionization of air.
There is, however, a practical problem of obtaining and maintaining the
driver gas stagnation conditions, Since the heat lost by thermal radi-
ation is roughly proportional to at least the fourth power of the
temperature, a high temperature driver gas will rapidly cool by radiation
heat {ransfer alone. It is desirable, therefore, to heat the driver gas
instantaneously before the diaphragm is burst. This mode of heating is
also desirable from the standpoint of the driver chamber strength
requirements. The driver gas would be cooled by the expansion fan before
the chamber temperature would bhe ircreased significantly.

Although a combustible driver gas will meet the requirements of an
almost instanteous energy source, the products of combustion necessarily
have a higher molecular weight than helium. Thus, at a given temperature,
the speed of scund in the products of combustion is correspondingly less
than that of helium. Although hydrogen has a lower molecular welight
than helium, hydrogen absorbs a considerable amount of energy by disso-
ciation. In addition, hydrogen will react at the contact surface and
presents an overall safety hazard.
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It appears thet the most reliable, economic, and efficient method
for rapidly heating helium to extremely high enthalpies is by the dis-
charge of an electric are through the driver chamber. The potential for
the arc may be obtained by the use of a cepacitor bank, and the arc may
be initiated by the use of a small diameter starter wire. Figures 7
through 9 illustrate the stagnation properties of helium as a function
of the arc discharge energy and the predischarge, helium pressure. In
figure 10(a) the normal shock velocity that may be cobteined in real air
is shown as a function of the helium driver gas state and the initial
driven air pressure. Figure 10{b) illustrates a practical range of
operating conditions including the energy required in the capacitor bank
to achieve these conditions. This assumes an overall efficiency of
20 percent which appears to be a reasonable estimate For initizl helium
pressure of 200 psi or above. Below an initial helium driver gas pres-
sure of roughly 200 psi the efficiency decreases, although this depends
on the magnitude of the discharge energy {ref. 6). The three initial
driven air pressures used in figure lO(A) correspond to a range of
altitudes where simulation of the normal shock speeds shown is of inter-
est for mamned flight (150 — 250,000 ft). To obtain a greater range of
shock speeds for a given energy input, it is alsc possible to increase
the range of initisl driven pressures. The shock velocity and the
initial driven air pressure (Pl) campletely specify the normal shock

parameters. Two of these parameters, the shock strength and the test
gas velocity have been plotted, respectively, in figures 11 and 12
(refs. 3 and 4).

Variable area.- The design of a high performance shock tube for a
specified range of operation must meet seversl economic, design, and
operating constraints. If the measuring technigues and range of oper-
ation is fixed then the minimum driven chamber length end diameter are
also fixed. Since the economic and design constraints are primarily
concerned with the driver chember there is a degree of flexibility,
namely, &a varisble area shock tube.

Figure 1(b) illustrates that there is a minimum driver chamber
length that will prevent the reflected expansion fan head from inter-
fering with the test gas before the data is obtained. Figures 7 through
9 give the driver gas conditions as a function of the discharge energy
rer unit wolume. Thus ; to reduce the absolute value of the discharge
energy, the volume of the driver chamber or the chamber diameter mey he
reduced below that of the driven chamber. This reducticn of the driver
chamber diesmeter is also an advantage in reducing the driver chamber
strength requirements or wall thickness as shown in figure 13.

Figures 10{a) and 10(b) are berformence charts for a constant area
tube. Tt is desirable to investigate the performance characteristics of
& variable sarea tube. This has boen done (refs. 7 and 8) by considering
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the effective driver gas properties. Figures 14 and 15 show, respec-
tively, the effective driver gas temperature and pressure divided by the
actual driver gas temperature and pressure in the reduced diameter
driver chamber, as a function of the area ratio. The effective driver
gas properties are denoted by a prime and are defined as the properties
in a constant area shock tube that will achieve the same performance as
the variable area tube. It is noted that both the effective temperature
and the effective pressure decrease with increasing area ratio. Fig-
ures 14 and 15 may be used in conjunction with figure lO(A) to determine
the performance characteristics for any area ratio.

If the driven chamber area is 15 times greater than that of the
driver chamber, the total energy required to obtain a given shock
velocity is roughly 15 percent of the energy reguired for the same shock
tube with a constant area equal to the driven chamber area. This is for
a helium-air shock tube and for velocities in excess of 29 kolofeet per
second. Although this appears to be a considerable advantage from the
standpoint of energy requirements, it is brought about only by a minimum
diameter driven chamber requirement. This minimum diameter driven cham-
ber requirement is due to viscous effects as discussed below. In fact,
the shock velocity obtained for a given driver chamber, driver gas state,
and driven gas pressure can be increased by decreasing the driven chamber
diameter. For a high performance shock tube, however, the boundary
layer effects become crucial.

Boundary layer effects.- There are extremely impecrtant practical
restrictions to shock tube cperation which stem from the viscous proper-
ties of real gases. At a given station in the driven chamber, the time
for observing the test gas is limited to the time between the passing
of the shock and the contact surface. If the initial formation of the
shock wave is assumed to be instantaneous the test time may be expressed
as,

)dx ' (17)

at a distance L from the diaphragm. All of the previous relations and
calculations are based on an inviscid flow which predicts that the shock
veloecity (Us) and the contact surface velocity (UQ . ) are ccnstant.
For these assumptions, where UB and UC o = UE are constant, an
ideal test time may be obtained.

T _1 i
(f)ideal BT (18)
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This ideal test time per unit length has been plotted in figure 16 for
various initial driven pressures. The data shown in this figure is
considerably below the ideal case.

Although the inviscid assumption enables a fairly accurate predic-
tion of the major flow in a shock tube, the actual flow contains a
boundary layer which is initiated at the shock front. This boundary
layer causes two interrelated effects. One is an attenuation or slowing
down of the shock wave while the other is a depletion of the test gas by
a mass flow from the test gas and into the boundary layer. The former
effect reduces the performance of the shock tube Tlow below that which
would be predicted by the inviscid analysis. The latter effect, however,
can reduce the test time to the extent that it becomes impossible to
obtain data by the use of stationary instrumentation.

Hooker (ref. 9) has evaluated the effects of the mass flux out of
the test gas. The results may be thought of as two regimes of test time
dependence on initial driven pressure. For high initial driven pressures,
on the order of 1 mm Hg or above, the test time is on the order of
Lo percent of the ideal test time. For lower pressures the test time
decreases rapidly for decreasing pressure. Thus, to obtain sufficient
test time reguires a relatively high initial driven gas pressure. There
are, of course, many additional factors which also influence the test
time. For example, Anderson (ref. 10) has shown that the test time
reaches a maximum and then decreases as it travels through the driven
chamber. In addition, the adverse effect of low pressures on the test
+ime is decreased with increasing driven chember diameters. This iz to
be expected since the boundary layer area is roughly proporticonal to the
diameter while the test gas flow 15 proportional to the diameter squared.
In particular, this is a constraint which supports the variable area
shock tube discussed in sectiaon 5.

The data in figure 16 serves to illustrate the order of magnitude
obtained. The scatter is due to the differences between the facilities
as well as a turbulent mixing at the contact surface. A plane contact
surface, as shown in figure 1, would only result from a perfect diaphragm
burst. It is possible for a poor, or uneven, diaphragm burst to induce
enough turbulence at the contact surface for the available test time to
be negligible.

Experimental capabilities.- The normal shock propageting into the
driven section can be an excellent simulation of the normal shock
produced at the stagnation point of an entry vehicle. In addition, the
transient reaction of the driven gas as It passes through the normal
shock and relaxes to chemical and thermodynamic equilibrium enables the
study of chemical and reaction rates of the gas. It is noted that the
radiation characteristiecs of & gas as it passes through = normal shock,
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ineluding the nonequilibrium and equilibrium radiation, may be obtained
by effectively nonstationary instrumentation. For exanple, 1t is pos-
sible to have a gphotographic film moving at the same effective rate as
the normel shock (ref. 11). This allows a continuous photograph of &
shock as 1t propagates through a region of the driven chamber. The
photograph may be in form of a spectrum of thermal radiation, limited
only by the optical properties of the system {for example, lenses).

In many gas dynamic studies such as the determination of convective
heat transfer rates, high temperature thermodynamic properties of gases,
et cetera, it is desirable to use the shock tube to obtain extremely high
stagnation conditions. These conditions are obtained by reflecting the
shock wave either by the use of a model in the driven chamber or by the
reflection at the downstream end of the driven chamber. The stagnation
temperature, pressure, and enthalpy that may be obtained behind a re-
flected shock, are plotted, respectively, in figures 17 through 19 as a
function of the shock veloecity and the initial driven gas pressure.
Figure 20 illustrates the shock velocity that is necessary to simulate
the stagnation enthalpy encountered in flight for the Tlight velocity
(U,) shown. The fact that the shock velocity is less than the simulated
stagnation enthalpy flight velocity is obviously an advantage.

SHOCK TUNNELS

The shock tube is an extremely useful tool for the simulation and
study of normal shocks and stagnation conditions. For the simulation
and study of the hypersonic flow field about a body, however, the shock
tunnel has definite advantages.

Principle of operation and analysis.- The main limitation to ob-
taining steady, high Mach number flow in a nozzle is that of obtaining
sufficient stagnation conditions. The stagnation states obtained behind
reflected shocks in the driven chamber of a sheck tube {(region 5 in
figure 1(b)) cover a large range of conditions including high pressures
and/or high enthalpies. The states that may be achieved in this region
are illustrated in figures 17 through 19. A4 shock tunnel utilizes
these stagnation conditions for the flow through a supersonic or hyper-
sonic nozzle. The setup is illustrated schematically in figure 21.

Once the flow has been established, it is relatively steady for
the duration of the stagnation conditions of state 5. If the shock
tunnel flow is tailored (ref. 12), the flow time is limited either by
the depletion of the test gas through the nozzle or more likely by
the interaction of the reflected expansion fan head with the teszt gas.
The taillored condition is obtained if the reflected shock wave does rnot
interact with the contact surface. An interaction consists of a



16

secondary shock wave and expansion fan generated as the reflected shock
wave passes through the contact surface.

During operaticn, the test gas of the shock tunnel is expanded
frem its stagnation state to a high velaocity (U6) and a low temperature

and pressure. The expansion is nearly isentropic depending on the
efficiency of the nozzle. As long as the pressure is sufficient, the
test gas will remain in chemical and thermodynamic eguilibrium as it
expands. It is possible for the expanding test gas to become chemically
frozen if the pressure is too low. This effect has not been considered
in this report btut may be considered as detrimental.

In general, the area of the throat in a hypersonic shock tunnel is
negligible as compared to the area of the shock tube driven chamber.
Thus, the reflection of the normal shock wave was considered to be com-
plete. In addition, any decrease in the stagnation enthalpy due to
heat transfer and thermal radiation has been neglected. The expansion
o' the test gas through the hypersonic nozzle has been assumed to be
isentropic.

Performance characteristics.- The performance range of a hypersounic
shock tunnel is illustrated in Tigure 22, This figure illustrates the
combinations of Reynolds number per foot and Mach number that may be
achieved by the expanded test gas. The maximum stagnation pressure has
been selected as 3,000 Atm. based on the results of figure 13. The
range of operation may be extended by varying this pressure as shown in
figure 22 where a stagnation pressure of 100 Atm. has also been con-
sidered. The liquification limit is drawn as the point at which the
air begins to liquify based on a 3,000 Atm. stagnation pressure. An
increase in the stagnation pressure will increase the Reynolds number
that may be obtained before liquification. The low enthalpy limit

(§%~ = 20) is established by the capabilities of the shock tube and the
o

relatively low Mach numbers that may be obtained. The high enthalpy

h
limit <§5— = hOO) is established by the convective heating and erosion
o}

rroblems at the nozzle throat as well as the thermal radiation losses

. {2 . 6\

m the stagnalion Lest gas. The area ratioc limit \-7; = 107 | is rela-
A

5

tively arvitrary; however, the low pressures {~10 “Atm.) and large

nozzles required at this limit result in a reasonable restriction.
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The time limitation of steady flow for the range of conditions
shown in figure 22 is established by nozzle throat heating problems and
by the duration of the stagnation conditions. The testing time for a
shock tunnel is on the order of milliseconds as opposed to the micro-
second range of a shock tube.

Driver mechanism.- In principle, a shock turnnel may be driven by
many mechanisms, including pressure driven, combustion driven, and
electrically charged shock tubes. However, the tailored operation of a
shock tunnel reguires the same pressure and density ratio across the
reflected shock in both the test gas and the expanded driver gas (ref. 12).
This reguires a certain r5 and T3 depending on the driver gas and the

driven gas. To obtain a range of reflected and tailored conditions, a
range of T5 and T3 combinations is required. This may be accomplished

by using a range of driver stagnation conditions in various mixtures of
driver gases. The electric arc discharge is probably the most versatile
driver mechanism since there is no limit on the driver gas or gases that
may be used and the range of driver gas stagnation conditions is
greatest. In addition, the electric are discharge process has a high
degree of repeatability.

Experimental capabilities.~ The Mach number, Reynolds number range
of" a hypersonic shock tunnel is considerable. It is extremely useful
for flow field studies including heat transfer and pressure distribu-
tions as well as basic studies concerning nozzle flow and expanding
gases.

It is to be noted, however, that although certain flight parameters
may be simulated, complete simulation is in general not possible. For
example, the high Mach number range shown in figure 22 is accomplished
by extremely low free stream temperatures and not necessarily by high
velocities. In addition, the real gas effects of air do not scale from
the model used in a shock tunnel to the full-scale vehicle unless the
phenomena are completely understood.

CONCLUDING REMARKS

The characteristics of an electrically charged helium driver gas
shock tube and of a shock tunnel have been outlined above. The specific
capabilities of these facilities permit the experimental study of many
aspects of manned vehicle entry heating problems.
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4.2

Shock tunnel test section
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Figure 21.- Shock tunnel schematic and illustrative pressure and
temperature distributions,
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